AP CALCULUS BC Unit 4 Outline – Contextual Applications of the Derivative

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
9/18	LINEAR APPROXIMATIONS	Ex. 1 Find the linearization of $f(x) = \sqrt{1+x}$ at $x = 0$, and use it to approximate $\sqrt{1.02}$ without a calculator. Then use a calculator to determine the accuracy of the approximation.
	LINEARIZATION	Ex. 2 Find the linearization of $f(x) = \cos x$ at $x = \frac{\pi}{2}$, and use it to approximate $\cos 1.75$
	TANGENT LINE	without a calculator. Then use a calculator to determine the accuracy of the approximation.
	APPROXIMATION	
AP MUL	TIPLE CHOICE	
For the function f , $f'(x) = 2x + 1$ and $f(1) = 4$. What is the approximation for $f(1.2)$ found by using the line tangent to the graph of f at $x = 1$?		
(A) 0.6	(B) 3.4	(C) 4.2 (D) 4.6 (E) 4.64
HOMEW	ORK	Worksheet 22

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
9/19	RATES OF CHANGE	Notes Handout
HOMEWO	DRK	Worksheet 23

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
9/20	STRAIGHT-LINE MOTION	Ex. 1 A particle moves along a line so that its position at any time $t \ge 0$ is given by the	
7/20	STRAIGHT-LINE MOTION	function $s(t) = (t-2)^2 (t-4)$ where s is measured in meters and t is measured in	
		seconds.(a) Find the instantaneous velocity at any time <i>t</i>.	
		(b) Find the acceleration of the particle at any time <i>t</i>.	
		(c) When is the particle at rest?	
		(d) At what value of t does the particle change direction?	
		Ex. 2 The accompanying figure shows the velocity $v = f(t)$ of a particle moving on a	
		coordinate line. v = f(t) v = f(t) 1 2 3 4 5 6 7 8 9 t (sec)	
		 (a) When does the particle move forward? Move backward? Speed up? Slow down? (b) When is the particle's acceleration positive? Negative? Zero? (c) When does the particle move at its greatest speed? (d) When does the particle stand still for more than an instant? 	
AP MULT	TPLE CHOICE		
	y(t)		
	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		wh of the particle's position $y(t)$ at time t is shown above for ocity of the particle negative and the acceleration positive?	
(A) $0 < t$	(A) $0 < t < 1$ (B) $1 < t < 2$ (C) $2 < t < 3$ (D) $3 < t < 4$ (E) $4 < t < 5$		
-	e moves along a line so that its e speed of the particle increasir	velocity is given by $v(t) = -t^3 + 2t^2 + 2^{-t}$ for $t \ge 0$. For what values ag?	
(A) (0,0	.177) and $(1.256, \infty)$		
(B) (0, 1	256) only		
(C) (0, 2	.057) only		
(D) (0.17	77, 1.256) only		
(E) (0.17	77, 1.256) and $(2.057, \infty)$		
Номеwo	DRK	Worksheet 24	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS			
9/23, 24, 25	RELATED RATES	Notes Handout			
AP MULT	AP MULTIPLE CHOICE				
	The radius of a circle is increasing. At a certain instant, the rate of increase in the area of the circle is numerically equal to twice the rate of increase in its circumference. What is the radius of the circle at that instant?				
(A) $\frac{1}{2}$	(B) 1 (C) √	2 (D) 2 (E) 4			
The volu	ume of a certain cone for	which the sum of its radius, r , and height is constant is given by			
$V = \frac{1}{3}\pi$	$ar^2(10-r)$. The rate of c	hange of the radius of the cone with respect to time is 6. In terms of r ,			
_		volume of the cone with respect to time?			
(A) –24	$4\pi r$ (B) $6\pi r$	(C) $\frac{20}{3}\pi r - \pi r^2$ (D) $16\pi r - \frac{4}{3}\pi r^2$ (E) $40\pi r - 6\pi r^2$			
speed of of 20 mi (A) 0 (B) 4 (C) 19	 (B) 4.299 mpg per hour (C) 19.793 mpg per hour 				
-	A sphere is expanding in such a way that the area of any circular cross section through the sphere's center is increasing at a constant rate of 2 cm^2 /sec. At the instant when the radius of the sphere is 4 centimeters, what is				
the rate	the rate of change of the sphere's volume? (The volume V of a sphere with radius r is given by $V = \frac{4}{3}\pi r^3$.)				
(A)	(A) $8 \text{ cm}^3/\text{sec}$				
	(B) $16 \text{ cm}^3/\text{sec}$				
(D) 64	(D) $64\pi \text{cm}^3/\text{sec}$				
(E) 128	(E) $128\pi \mathrm{cm}^3/\mathrm{sec}$				
Номеwo	DRK	Worksheets 25 - 27			
1					

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
9/30	L'HOPITAL'S RULE		
AP MULT	TPLE CHOICE		
$\lim_{x\to 0}$	$\frac{e^x-1}{x}$ is		
(A) ∞	(B) <i>e</i> – 1 (C)	1 (D) 0 (E) e^x	
$\lim_{x \to 0} \frac{x^2}{1 - \cos x}$ is			
(A) –2	(B) 0 (C) 1	(D) 2 (E) nonexistent	
$\lim_{x \to 1} \frac{x^2 - 1}{\sin(\pi x)}$ is			
(A) -2	(B) $-\frac{2}{\pi}$ (C)	0 (D) $\frac{2}{\pi}$ (E) nonexistent	
HOMEWO	DRK	Worksheet 28	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
10/1	Review	None	
HOMEWORK		Worksheet 29	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
10/2	UNIT 4 FRQ	Rates of Change, Particle Motion
HOMEWORK		Worksheet 30

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
10/3	Unit 4 Exam	Rates of Change, Particle Motion
HOMEWORK		None